Multiplate SerolyzeR functionalities
Tymoteusz Kwieciński
2025-03-20
Source:vignettes/multiplate_tutorial.Rmd
multiplate_tutorial.Rmd
Introduction
In this tutorial we are going to cover all the possible options of
reading and writing data from multiple plates implemented in
SerolyzeR
package.
This tutorial will not be focused on a detailed analysis of the package functionalities that are designed to analyse a single plate at a time, as this is already covered in the .
Reading the data
Firstly, we need to locate our dataset. The SerolyzeR
package has a preloaded dataset, which can be found with a command given
below:
base_dir <- system.file("extdata", "multiplate_tutorial", package = "SerolyzeR", mustWork = TRUE) # get the filepath of the directory containing all the files
list.files(base_dir) # list all the files
#> [1] "P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001_layout.xlsx"
#> [2] "P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001.csv"
#> [3] "P10_SEROPED_62PLEX_PLATE10_04062023_RUN004_layout.xlsx"
#> [4] "P10_SEROPED_62PLEX_PLATE10_04062023_RUN004.csv"
#> [5] "P11_SEROPED_62PLEX_PLATE11_04062023_RUN005_layout.xlsx"
#> [6] "P11_SEROPED_62PLEX_PLATE11_04062023_RUN005.csv"
#> [7] "P12_SEROPED_62PLEX_PLATE12_04072023_RUN000_layout.xlsx"
#> [8] "P12_SEROPED_62PLEX_PLATE12_04072023_RUN000.csv"
#> [9] "P13_SEROPED_62PLEX_PLATE13_04072023_RUN001_layout.xlsx"
#> [10] "P13_SEROPED_62PLEX_PLATE13_04072023_RUN001.csv"
#> [11] "P14_SEROPED_62PLEX_PLATE14_04072023_RUN002_layout.xlsx"
#> [12] "P14_SEROPED_62PLEX_PLATE14_04072023_RUN002.csv"
#> [13] "P2_SEROPED_62PLEX_PLATE2_04042023_RUN000_layout.xlsx"
#> [14] "P2_SEROPED_62PLEX_PLATE2_04042023_RUN000.csv"
#> [15] "P3_rerun_SEROPED_PLATE3_04042023_RUN002_layout.xlsx"
#> [16] "P3_rerun_SEROPED_PLATE3_04042023_RUN002.csv"
#> [17] "P4_SEROPED_62PLEX_PLATE4_04042023_RUN003_layout.xlsx"
#> [18] "P4_SEROPED_62PLEX_PLATE4_04042023_RUN003.csv"
#> [19] "P5_SEROPED_62PLEX_PLATE5_04052023_RUN001_layout.xlsx"
#> [20] "P5_SEROPED_62PLEX_PLATE5_04052023_RUN001.csv"
#> [21] "P6_SEROPED_62PLEX_PLATE6_04052023_RUN003_layout.xlsx"
#> [22] "P6_SEROPED_62PLEX_PLATE6_04052023_RUN003.csv"
#> [23] "P7_SEROPED_62PLEX_PLATE7_04052023_RUN004_layout.xlsx"
#> [24] "P7_SEROPED_62PLEX_PLATE7_04052023_RUN004.csv"
#> [25] "P8_SEROPED_62PLEX_PLATE8_04052023_RUN005_layout.xlsx"
#> [26] "P8_SEROPED_62PLEX_PLATE8_04052023_RUN005.csv"
As you can see, this directory contains multiple files - both raw
output from the multiplex machine and the layout files, that help to
identify the samples on the plate. Each of the plate files, e.g.
P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001.csv
contains
its corresponding layout file, for instance
P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001_layout.xlsx
.
We will explain in detail how the directory should be structured in order to read the data properly in the section below. Let us first read the directory.
Reading a whole directory
To read the directory as above, we need to import the library
SerolyzeR
and run a single command
process_dir
. This function reads all the files in the
directory and processes them. It has an option to generate 3 tabular
outputs (similarly to the process_file
function). It is: -
MFI (mean fluorescence intensity) - the raw input MFI values, with
optional blank adjustment only - nMFI (normalised mean fluorescence
intensity) - the normalised values, with optional blank adjustment and
normalisation to the reference sample - RAU (relative antibody units) -
the normalised values, with optional blank adjustment transformed to the
relative antibody units
These output types can be selected with the
normalisation_types
parameter, which is a vector of all
tabular outputs to be generated. By default this parameter equals to all
possible values - c("RAU", "nMFI", "MFI")
.
Now, we will discuss how this method works and describe its most
important parameters. By default, it saves all the outputs into the
input directory, this can be changed with the output_dir
parameter. In this tutorial, we will set the output directory to a
temporary directory, which can be created with the
tempdir()
function. We also specify the format of the input
files, which is xPONENT
in this case. The
format
parameter can be either set to xPONENT
,
INTELLIFLEX
or NULL
. In case the format is
NULL
, the function will try to infer the format based on
the filename. For more details, we refer the reader to the documentation
of the ` function.
One of the most useful features of the process_dir
function is that it enables us to do all the preprocessing steps in one
go. By setting merge_outputs
parameter to
TRUE
, the method will output a single file with all the
data from all the plates. This is very useful when we want to analyse
the data from multiple plates at once.
This method also supports automatic generation of HTML reports, which
could be enabled with setting the parameter
generate_reports
to TRUE
, for the single plate
reports, and generate_multiplate_report
to
TRUE
, for the multiplate report. By default both of these
values are set to FALSE
.
library(SerolyzeR)
output_dir <- file.path(tempdir(), "multiplate-tutorial") # create a temporary directory to store the output data
R.utils::mkdirs(output_dir)
#> [1] TRUE
plates <- process_dir(base_dir, format = "xPONENT", output_types = c("RAU", "nMFI", "MFI"), output_dir = output_dir, merge_outputs = TRUE, return_plates = TRUE, generate_reports = FALSE, generate_multiplate_reports = FALSE)
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P10_SEROPED_62PLEX_PLATE10_04062023_RUN004.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P10_SEROPED_62PLEX_PLATE10_04062023_RUN004!
#>
#> Processing plate 'P10_SEROPED_62PLEX_PLATE10_04062023_RUN004'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P11_SEROPED_62PLEX_PLATE11_04062023_RUN005.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P11_SEROPED_62PLEX_PLATE11_04062023_RUN005!
#>
#> Processing plate 'P11_SEROPED_62PLEX_PLATE11_04062023_RUN005'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P12_SEROPED_62PLEX_PLATE12_04072023_RUN000.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P12_SEROPED_62PLEX_PLATE12_04072023_RUN000!
#>
#> Processing plate 'P12_SEROPED_62PLEX_PLATE12_04072023_RUN000'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P13_SEROPED_62PLEX_PLATE13_04072023_RUN001.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P13_SEROPED_62PLEX_PLATE13_04072023_RUN001!
#>
#> Processing plate 'P13_SEROPED_62PLEX_PLATE13_04072023_RUN001'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P14_SEROPED_62PLEX_PLATE14_04072023_RUN002.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P14_SEROPED_62PLEX_PLATE14_04072023_RUN002!
#>
#> Processing plate 'P14_SEROPED_62PLEX_PLATE14_04072023_RUN002'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001!
#>
#> Processing plate 'P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P2_SEROPED_62PLEX_PLATE2_04042023_RUN000.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P2_SEROPED_62PLEX_PLATE2_04042023_RUN000!
#>
#> Processing plate 'P2_SEROPED_62PLEX_PLATE2_04042023_RUN000'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P3_rerun_SEROPED_PLATE3_04042023_RUN002.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P3_rerun_SEROPED_PLATE3_04042023_RUN002!
#>
#> Processing plate 'P3_rerun_SEROPED_PLATE3_04042023_RUN002'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P4_SEROPED_62PLEX_PLATE4_04042023_RUN003.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P4_SEROPED_62PLEX_PLATE4_04042023_RUN003!
#>
#> Processing plate 'P4_SEROPED_62PLEX_PLATE4_04042023_RUN003'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P5_SEROPED_62PLEX_PLATE5_04052023_RUN001.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P5_SEROPED_62PLEX_PLATE5_04052023_RUN001!
#>
#> Processing plate 'P5_SEROPED_62PLEX_PLATE5_04052023_RUN001'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P6_SEROPED_62PLEX_PLATE6_04052023_RUN003.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P6_SEROPED_62PLEX_PLATE6_04052023_RUN003!
#>
#> Processing plate 'P6_SEROPED_62PLEX_PLATE6_04052023_RUN003'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P7_SEROPED_62PLEX_PLATE7_04052023_RUN004.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P7_SEROPED_62PLEX_PLATE7_04052023_RUN004!
#>
#> Processing plate 'P7_SEROPED_62PLEX_PLATE7_04052023_RUN004'
#> Reading Luminex data from: /home/runner/work/_temp/Library/SerolyzeR/extdata/multiplate_tutorial/P8_SEROPED_62PLEX_PLATE8_04052023_RUN005.csv
#> using format xPONENT
#>
#> New plate object has been created with name: P8_SEROPED_62PLEX_PLATE8_04052023_RUN005!
#>
#> Processing plate 'P8_SEROPED_62PLEX_PLATE8_04052023_RUN005'
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Extracting the raw MFI to the output dataframe
#> Merged output saved to: /tmp/Rtmpva3zjw/multiplate-tutorial/merged_MFI_20250320_121751.csv
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Fitting the models and predicting RAU for each analyte
#> Merged output saved to: /tmp/Rtmpva3zjw/multiplate-tutorial/merged_RAU_20250320_121751.csv
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Computing nMFI values for each analyte
#> Merged output saved to: /tmp/Rtmpva3zjw/multiplate-tutorial/merged_nMFI_20250320_121751.csv
Remember, if you want to read all your files properly, you need to
follow the naming convention of the files. The layout file should have
the same name as the plate file, with the added suffix
_layout
. The detailed description of the convention, along
with the list of all the possible arguments can be found in the
documentation of the function, which can be accessed with
?process_dir
command.
Now, let us investigate the merged output of the
process_dir
function, which contains the data for all the
samples and analytes, for each data type: MFI, nMFI and RAU.
For detailed description of the normalised output for a single plate, we refer the reader to the . For the detailed description of the reports, we refer the reader to the . If you are interested in specific plots genrerated by our package, for quality control of both single and multiple plates, we refer you to the vignette .
Let us investigate the output directory and the files that were created.
list.files(output_dir)
#> [1] "merged_MFI_20250320_121751.csv" "merged_nMFI_20250320_121751.csv"
#> [3] "merged_RAU_20250320_121751.csv"
Since, we have selected the merge_outputs
parameter to
be TRUE
, we should see 3 files in the output directory:
merged_MFI_{current_timestamp}.csv
,
merged_nMFI_{current_timestamp}.csv
and
merged_RAU_{current_timestamp}.csv
.
merged_RAU_filepath <- list.files(output_dir, pattern = "RAU", full.names = TRUE) # get the exact path to the RAU file
RAU_data <- read.csv(merged_RAU_filepath)
This file is a standard CSV dataframe. Its rows correspond to the samples and the columns to the analytes. The first column is the plate name from the sample originates, the second one is the sample name. The remaining columns contain the analytes.
RAU_data[1:5, 1:5]
#> plate_name sample_name Adenovirus.T3
#> 1 P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001 2-SERPR4187 565.6949
#> 2 P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001 2-SERPR4188 4989.9653
#> 3 P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001 2-SERPR4189 7876.6624
#> 4 P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001 2-SERPR4190 484.5717
#> 5 P1_SEROPED_PBT_62PLEX_PLATE1_03312023_RUN001 2-SERPR4191 1317.9263
#> Adenovirus.T5 Bordetella.p..Toxin
#> 1 772.2534 2224.569
#> 2 5380.3923 4628.242
#> 3 3477.8758 1428.297
#> 4 567.0823 4953.693
#> 5 1005.1900 2324.620