Perform process_plate
and generate_plate_report
for a given plate file.
In more detail, this function reads the plate file and calls the process_plate
on the processed plate objects across all the normalisation types, including the raw MFI values.
If the user has specified the generate_report
flag, it will also call the generate_plate_report
function
generating the quality control report.
Usage
process_file(
plate_filepath,
layout_filepath,
output_dir = "normalised_data",
format = "xPONENT",
generate_report = FALSE,
process_plate = TRUE,
normalisation_types = c("RAU", "nMFI"),
verbose = TRUE,
...
)
Arguments
- plate_filepath
(
character(1)
) The path to the plate file.- layout_filepath
(
character(1)
) The path to the layout file.- output_dir
(
character(1)
) The directory where the output files should be saved. The default is"normalised_data"
.- format
(
character(1)
) The format of the Luminex data. The default is"xPONENT"
. Available options are"xPONENT"
and"INTELLIFLEX"
.- generate_report
(
logical(1)
) IfTRUE
, generate a quality control report. The default isFALSE
.- process_plate
(
logical(1)
) IfTRUE
, process the plate. The default isTRUE
. If the value is set toFALSE
the function will only read the plate file and return the plate object.- normalisation_types
(
character()
) A vector of normalisation types to use. The default isc("RAU", "nMFI")
.- verbose
(
logical(1)
) Print additional information. The default isTRUE
.- ...
Additional arguments to for the
read_luminex_data
function.
Examples
# Select an input csv file for processing and corresponding layout file
plate_file <- system.file("extdata", "CovidOISExPONTENT_CO_reduced.csv", package = "PvSTATEM")
layout_file <- system.file("extdata", "CovidOISExPONTENT_CO_layout.xlsx", package = "PvSTATEM")
example_dir <- tempdir(check = TRUE) # a temporary directory
# create and save dataframe with computed dilutions for all suported noramlization types
process_file(plate_file, layout_file, output_dir = example_dir)
#> Reading Luminex data from: /home/runner/work/_temp/Library/PvSTATEM/extdata/CovidOISExPONTENT_CO_reduced.csv
#> using format xPONENT
#>
#> New plate object has been created with name: CovidOISExPONTENT_CO_reduced!
#>
#> Processing plate 'CovidOISExPONTENT_CO_reduced'
#> Fitting the models and predicting RAU for each analyte
#> Adding the raw MFI values to the output dataframe
#> Saving the computed RAU values to a CSV file located in: '/tmp/RtmpFPTjFr/CovidOISExPONTENT_CO_reduced_RAU.csv'
#> Computing nMFI values for each analyte
#> Adding the raw MFI values to the output dataframe
#> Saving the computed nMFI values to a CSV file located in: '/tmp/RtmpFPTjFr/CovidOISExPONTENT_CO_reduced_nMFI.csv'
#> Plate with 49 samples and 2 analytes
example_dir2 <- tempdir(check = TRUE) # a temporary directory
# process the plate for a specific normalization type
process_file(plate_file, layout_file, output_dir = example_dir2, normalisation_types = c("RAU"))
#> Reading Luminex data from: /home/runner/work/_temp/Library/PvSTATEM/extdata/CovidOISExPONTENT_CO_reduced.csv
#> using format xPONENT
#>
#> New plate object has been created with name: CovidOISExPONTENT_CO_reduced!
#>
#> Processing plate 'CovidOISExPONTENT_CO_reduced'
#> Warning: The specified file /tmp/RtmpFPTjFr/CovidOISExPONTENT_CO_reduced_RAU.csv already exists. Overwriting it.
#> Fitting the models and predicting RAU for each analyte
#> Adding the raw MFI values to the output dataframe
#> Saving the computed RAU values to a CSV file located in: '/tmp/RtmpFPTjFr/CovidOISExPONTENT_CO_reduced_RAU.csv'
#> Plate with 49 samples and 2 analytes