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Graphical models

A graphical models theory generalizes and is able to describe a broad range of statistical models

Markov models/hidden Markov models

Bayesian networks

Kalman filters

neural networks
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Intuitions

Graphical models bound probability and graph theory

probability - uncertainty/randomness

graph theory - dependence/correlation
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Undirected graph [1/3]
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Undirected graph [2/3]
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Undirected graph [3/3]
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Gaussian distribution factorization

Any multivariate normal distribution N(µ,Σ) can be parameterized by canonical parameters in
the form

γ = Σ−1µ and Θ = Σ−1.

If X ∼ N(µ,Σ) factorizes according to some graph G , then θst = 0 for any pair (s, t) /∈ E .

This sets up correspondence between the zero pattern of the matrix Θ and pattern of the
underlying graph. In particular, if the θst = 0, then variables s and t are conditionally
independent, given the other variables.
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Graph and matrix correspondence
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(d) The associated sparsity pattern of the
precision matrix Θ. White squares correspond to
zero entries.
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MLE...

Let S be a sample covariance matrix.

MLE

Θ̂ML ∈ argmax
Θ∈Sp

+

{log detΘ− tr (SΘ)}

MLE exists iff the matrix S is nonsingular. Then the solution to problem above is simply given
by

S−1 = Θ̂.
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...and its problems

If a number of variables p is comparable or greater than a number of observations N, then the
sample covariance matrix S is singular, thus the MLE does not exist.

Moreover, it is obvious that P(∃i,j σ̂ij = 0) = 0, but in many applications a sparse solution is
demanded.
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Regularization

The number of edges can be controlled by the `0-based quantity

ρ0(Θ) =
∑
s 6=t

I[θst 6= 0].

Note that ρ0(Θ) = 2|E (G )| for a given graph G .

`0-based problem

Θ̂ ∈ argmax
Θ∈Sp

+
ρ0(Θ)6k

{log detΘ− tr (SΘ)}

Unfortunately, the `0-based constrained defines a highly nonconvex constraint set, what makes
the problem hard to solve.

Michał Makowski (WMI UWr) Precision matrix estimation in GGMs June 4, 2020 13 / 58



Convex regularization

Convex relaxation of `0-based constrain leads to

Lλ(Θ,X) = log detΘ− tr (SΘ) − F (Θ).

where F (·) denotes any convex function, which might be applied in the considered problem.
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Main motivation - FDR control

A performance of every binary classifier could be summarized in a confusion matrix

(+)

(−)

(+) (−)Real value

Test outcome
True positive False positive

False negative True negative
.

(Local) False discovery rate (FDR)

FDR = E
[

#[False positive]
#[False positive] +#[True positive]

]

localFDR = E
[
#[False positive outside the component]
#[False positive] +#[True positive]

]
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Penalty

Lambda based on multiple testing theory

gLasso - Bonferonni correction (Banerjee et. al.)

gSLOPE - Holm method

gSLOPE - Banjamini-Hochberg procedure
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Lambda comparision

Procedure:

gLasso (Banerjee)

gSLOPE (BH)

gSLOPE (Holm)
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Algorithms

For solving the Graphical SLOPE problem we used the Alternating direction method of
multipliers, it can solve convex problems in the form

minimize f (x) + g(y)

subject to Ax + By = c .

For solving the Graphical Lasso problem we used an algorithm proposed by Friedman et al. in
theirs first work about this method. Although we derived an ADMM-based algorithm, it was
orders of magnitude slower than original one.
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Implementation overview

Implementation with R, the huge package for simulations.
Various types of graphs structure: cluster, hub, and scale-free.
Data: p = 100, n ∈ {50, 100, 200, 400}; different magnitude ratios; different sparsity and
size of components.
Two levels of a desirable FDR control: 0.05 and 0.2 .
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Cluster results
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Cluster ROC
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Procedure: gLasso (Banerjee) gSLOPE (BH) gSLOPE (Holm)

Setup: scaled α = 0.05, 100 variables, 10 components, cluster graph, MR = 3.33, P(xij 6= 0) = 0.5.
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Hub results
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Non-cluster ROC
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Procedure: gLasso (Banerjee) gSLOPE (BH) gSLOPE (Holm)

Setup: scaled α = 0.05, 100 variables, 10 components, hub graph, MR = 3.33.
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Procedure: gLasso (Banerjee) gSLOPE (BH) gSLOPE (Holm)

Setup: scaled α = 0.05, 100 variables, scale-free graph, MR = 3.33.
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Let’s go deeper into theory...
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Conditional independence

Two random variables X , Y are conditionally independent wrt random vector
Z = (Z1, . . . ,Zn)

T iff their distributions are independent wrt Z.
This relationship is denoted by symbol ⊥⊥.

Formally, for all triples x , y , z

(X ⊥⊥Y ) | Z ⇐⇒ FX ,Y |Z=z(x , y) = FX |Z=z(x) · FY |Z=z(y),

where FX ,Y |Z=z(x , y) is the conditional CDF of X and Y for a given Z.
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Conditional independence and graph structure

For a family of multivariate probability distributions there could be constructed a graph which
constraints a PDF factorization and the conditional independence property

node A is not connected with node B ⇐⇒ XA⊥⊥XB | X−AB ,

where X−AB denotes all random variables except XA and XB .
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Conditional independence and precision matrix

Canonical parameterization of Multivariate Gaussian Distribution constraint a precision matrix
and a conditional independence property.

Let (X1, . . . ,Xn) ∼ N(γ,Θ), then

Xs ⊥⊥Xt | X−st ⇐⇒ θst = 0,

where X−st denotes all random variables except Xs and Xt .
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Graph structure and precision matrix

There is connection between an underlying graph and a precision matrix structure

node S is not connected with node S ⇐⇒ θst = 0,

where s and t are variable indexes of Multivariate Gaussian Distribution.
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Multiple testing

Bonferonni correction
The Bonferroni correction rejects the null hypothesis for each pi 6 α

m , thereby controls the
FWER at level α, that is FWER 6 α. No other assumptions are required.

Holm method
Sort p-values ascending and reject the first hypothesis for which p(k) >

α
m+1−k is true, then

reject every hypothesis before. Holm method controls FWER at level α.

Benjamini-Hochberg method

Sort p-values ascending and find first the hypothesis for which p(k) 6 α
k
m is true, then reject

every hypothesis before. BH method controls FDR at level α.
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Graphical Lasso

The convex relaxation of `0-based constrain leads to

Lλ(Θ,X) = log detΘ− tr (SΘ) − λ‖Θ ‖1.

where ‖ · ‖1 denotes entrywise off-diagonal `1-norm ‖A‖1 =
∑

i 6=j |aij |.

Graphical Lasso problem

Θ̂ ∈ argmax
Θ∈Sp

+

{log detΘ− tr (SΘ) − λ‖Θ ‖1} .
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Graphical Lasso parameter choice

Banerjee lambda for Graphical Lasso

λBanerjee(α) = max
i<j

(sii , sjj)
qtn−2(1−

α
2p2 )√

n − 2+ qt2n−2(1−
α

2p2 )
(1)

The following theorem was formulated by Banerjee et al.

Theorem
Using (1) as the penalty parameter in Graphical Lasso problem, for any fixed level α we obtain

P(False Discovery) 6 α.
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SLOPE

In the [Bog+15] Bogdan et al. proposed novel approach for regularization in regression
analysis. SLOPE uses the OL1 norm instead of the L1 norm for a coefficient choice.

OL1 norm
Penalty based on sorted-`1 (known as OL1, OWL or OSCAR) for β ∈ Rp and
λ ∈ Rp, λ1 > . . . > λp is defined as

Jλ(β) =

p∑
i=1

λi |β|(i).

It was shown that under some assumptions and a construction of λ parameters based on BH
procedure, proposed method controls FDR in multivariate regression settings.

Michał Makowski (WMI UWr) Precision matrix estimation in GGMs June 4, 2020 32 / 58



Graphical SLOPE

In the graphical SLOPE the L1 norm from a graphical Lasso algorithm is changed for the
off-diagonal OL1 norm

Lλ(Θ,X) = log detΘ− tr (SΘ) − Jλ(Θ).

Graphical SLOPE problem

Θ̂ ∈ argmax
Θ∈Sp

+

{log detΘ− tr (SΘ) − Jλ(Θ)} ,

In the [Sob19] P. Sobczyk showed that OL1 brings promising results in terms of a FDR control.
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Graphical SLOPE parameter choice (1/2)

Holm lambda for Graphical SLOPE

m =
p(p − 1)

2
,

λHolm
k =

qtn−2(1−
αk
m )√

n − 2+ qt2n−2(1−
αk
m )
,

λHolm = {λHolm
1 , λHolm

2 , ..., λHolm
m }.

It is based on the Holm method for the multiple testing.
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Graphical SLOPE parameter choice (2/2)

BH lambda for Graphical SLOPE

m =
p(p − 1)

2
,

λBH
k =

qtn−2(1−
α

m+1−k )√
n − 2+ qt2n−2(1−

α
m+1−k )

,

λBH = {λBH
1 , λBH

2 , ..., λBH
m }.

It is based on the Benjamini-Hochberg procedure for the multiple testing.
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Precursors

The alternating direction method of multipliers (ADMM) is an algorithm that solves convex
optimization problems by breaking them into smaller pieces, each of which are then easier to
handle.

The precursors of ADMM

Dual Ascent and Dual Decomposition algorithms (decomposability properties)

Method of multpliers (convergence properties)
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ADMM

The ADMM algorithm can solve problems in the form

minimize f (x) + g(y)

subject to Ax + By = c ,

where convexity of functions f and g is assumed.
Augmented Lagrangian with parameter ρ > 0 is defined as

Lρ(x , y , ν) = f (x) + g(y) + νT (Ax + By − c) +
ρ

2
‖Ax + By − b‖2.
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ADMM for gSLOPE

Optimisation problem for graphical SLOPE is in the form

minimize − log detΘ+ tr (SΘ) + I[Θ � 0] + Jλ(Y )

subject to Y =Θ .

Augmented Lagrangian Lρ : Rp×p ×Rp×p ×Rp×p → R with parameter ρ > 0 is given by

Lρ(X ,Y ,N) = − log detΘ+ tr (SΘ) + I[Θ � 0] + Jλ(Y )+

ρ〈N,Θ−Y 〉F +
ρ

2
‖Θ−Y ‖2F .
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Let’s dive even deeper...
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Factorization theorem
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Compatibility function

Let G = (V ,E ) be a graph with a vertex set V = 1, 2, . . . , p and C be its clique set. Let
X = (X1, . . . ,Xp) be a random vector defined on a probability space (Ω,F,P), indexed by the
graph nodes.

Definition (Compatibility function)
Let C ∈ C be a clique of the graph G and let XC be a subvector of the vector X indexed by the
elements of the clique C , that is XC = (Xs , s ∈ C ). A real-valued function ψC of the vector
XC taking positive real values is called a compatibility function.
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Factorization property

Definition (Factorization)
Let C ∈ C be a clique of the graph G and let XC be a subvector of the vector X indexed by the
elements of the clique C , that is XC = (Xs , s ∈ C ). A real-valued function ψC of the vector
XC taking positive real values is called a compatibility function.

Given a collection of compatibility functions, we say that probability distribution P factorizes
over G if it has decomposition

P(x1, . . . , xn) =
1
Z

∏
C∈C

ψC (xC ), (2)

where Z is the normalizing constant, known as the partition function. It is given by

Z =
∑

x

∏
C∈C

ψC (xC ), (3)

where the sum goes over all possible realizations of X.
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Markov property

Consider a cut set S of the given graph and let introduce a symbol ⊥⊥ to denote the relation is
conditionally independent of. With this notation, we say that the random vector X is Markov
with respect to G if

XA⊥⊥XB | XS for all cut sets S ⊂ V , (4)

where XA denotes the subvector indexed by the subgraph A.
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Canonical formulation
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Canonical formulation

Any nondegenerated multivariate normal distribution N(µ,Σ) can be reparameterized into
canonical parameters in the form

γ = Σ−1µ and Θ = Σ−1.

Then density function is given by

Pγ,Θ(x) = exp

{
p∑

s=1

γsxs −
1
2

p∑
s,t=1

θstxsxt − A(γ,Θ)

}
,

where A(γ,Θ) = −1
2

(
det[(2π)−1Θ] + γT Θ−1 γ

)
.
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Canonical formula derivation

Pµ,Σ(x) =
(√

det[2πΣ]
)−1

exp

{
(−

1
2
(x − µ)TΣ−1(x − µ)

}
=

(√
det[(2πΣ)−1]

)
exp

{
−
1
2
xTΣ−1x + xTΣ−1µ−

1
2
µTΣ−1µ

}
=

(√
det[(2π)−1Θ]

)−1

exp

{
−
1
2
xT Θ x + xTγ−

1
2
γT Θ−1 γ

}
= exp

{
−
1
2
xT Θ x + xTγ−

1
2
(
det[(2π)−1Θ] + γT Θ−1 γ

)}
= exp

{
−
1
2
xT Θ x + xTγ− A(γ,Θ)

}
= Pγ,Θ(x)
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Log-likelihood derivation
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Log-likelihood derivation (1/2)

L(Θ,X) =
1
N

N∑
i=1

logPΘ(xi )

=
1
N

N∑
i=1

−
1
2
xT

i Θ xi − A(Θ)

=
1
N

N∑
i=1

1
2
log det[(2π)−1Θ] −

1
2
xT

i Θ xi

=
1
2N

N∑
i=1

log
(
(2π)−N det[Θ]

)
− xT

i Θ xi

=
1
2N

N∑
i=1

log detΘ− N log 2π− xT
i Θ xi = . . .
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Log-likelihood derivation (2/2)

. . . =
1
2N

N∑
i=1

log detΘ− N log 2π− xT
i Θ xi

=
1
2N

N∑
i=1

log detΘ− N log 2π− tr
(
xT

i Θ xi

)
=

1
2
log detΘ−

N

2
log 2π−

1
2N

N∑
i=1

tr
(
xix

T
i Θ

)
=

1
2
log detΘ−

N

2
log 2π−

1
2
tr (SΘ) ,

where S is an empirical covariance matrix given by 1
N

∑N
i=1 xix

T
i .
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ADMM for Graphical SLOPE
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ADMM for Graphical SLOPE

Graphical SLOPE problem - ADMM formulation

minimize − log detX + tr (XS) + I[X � 0] + Jλ(Y )

subject to X = Y .

Graphical SLOPE problem - Augmented Lagrangian

Lρ(X ,Y ,N) = − log detX + tr (XS) + I[X � 0]

+ λ‖Y ‖1 + ρ〈N,X − Y 〉F +
ρ

2
‖X − Y ‖2F

Michał Makowski (WMI UWr) Precision matrix estimation in GGMs June 4, 2020 52 / 58



X-update (1/3)

We have

Xk = argmin
X

Lρ(X ,Yk−1,Nk−1) = argmin
X�0

{
− log detX +

ρ

2

∥∥∥X − S̃k−1

∥∥∥2

F

}
,

where
S̃k−1 = −Nk−1 + Yk−1 −

1
ρ
S ,

The X -gradient of the augmented Lagrangian is given by

∇X Lρ(X ,Yk−1,Nk−1) = −X−1 + ρX − ρS̃k−1.

As the augmented Lagrangian is convex, it is clear that for some X ∗ � 0

∇X Lρ(X
∗,Yk−1,Nk−1) = −(X ∗)−1 + ρX ∗ − ρS̃k−1 = 0.
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X-update (2/3)

Rewriting equation as
−(X ∗)−1 + ρX ∗ = ρS̃k−1,

we can find a matrix that meets this condition.

At first, lets take the eigenvalue decomposition of right side

ρS̃k−1 = ρQΛQT .

Then by multiplying right and left side by Q and QT respectively, we obtain

−(X̃ ∗)−1 + ρX̃ ∗ = ρΛ,

where X̃ ∗ = QTX ∗Q.
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X-update (3/3)

We have to find positive numbers x̃∗ii that satisfy

(x̃∗ii )
2 − lii x̃

∗
ii −

1
ρ
= 0.

It is obvious that

x̃ii =
li +

√
l2i + 4/ρ

2
.

Thus X ∗ is given by X ∗ = QT X̃ ∗Q. All diagonals are positive since ρ > 0. Define Fρ(Λ) as

Fρ(Λ) =
1
2
diag

{
li +

√
l2i + 4/ρ

}
.

Since that

X ∗ = QT X̃ ∗Q = QTFρ(Λ)Q = Fρ(S̃k−1) = Fρ

(
−Nk−1 + Yk−1 −

1
ρ
S

)
,

we obtain a formula for updating Xk in each step.
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Y-update

A formula for Yk is different. We have

Yk = argmin
Y

Lρ(Xk ,Y ,Nk−1)

= argmin
Y

{
Jλ(Y ) +

ρ

2
‖Y − (Xk + Nk−1)‖2F

}
The last line of Y -update can be represented as a proximity operator which has closed form
formula for SLOPE

argmin
Y

{
Jλ(Y ) +

ρ

2
‖Y − (Xk + Nk−1)‖2F

}
= proxJλ,ρ (Xk + Nk−1) . (5)
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ADMM for Graphical SLOPE
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Thank you for your attention
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